数学是发明的还是发现的
1.数学规律是被发现的还是被发明的
这问题貌似哲理性。
地理学家发现未知地域,生物学家寻找新物种,化学家发现新化合物。数学家则是在几何图形和数字中发现新物体以及它们的特征。不过呢,数学上的物体有些特别:我们不能把它们送到博物馆或者动物园展览。它们其实是抽象的物体,是我们想象和思维的产物。有点像柏拉图式的观点。对于古典时代的哲学家柏拉图而言,数学极其重要。因为数学为他“所有可感知物背后都存在一个理想原型”这一观点提供了有力的支持。以下在数学上是不言而喻的:不管我们在沙地上,纸张上画圈圈还是在电脑屏幕前观察它,数学观点中关注的始终是哪个“理想”的圆,而不是沙地上的犁沟,纸张上的石墨或者屏幕上的像素点。不过呢,柏拉图信念的关键在于,理想物体是现实物体的最高阶段。在柏拉图看来,所有可感知的物体,也就是所有我们看到的,听到的,触及到的,闻到或是尝到的东西,都只不过是相应理想物体的单调影射而已。柏拉图主义者确信数学特征是被发现的,因为理想物体早已存在于柏拉图理想的天空中。
现代数学的观点与之恰好相反。以其形式的观点看来,数学只是游戏而已。这不代表允许做一切事或者什么都不重要。恰恰相反:游戏除了游戏规则之外就什么也没有了!玩家只能按游戏规则行事。数学中,公理就是游戏规则,阐述的是基本概念的使用方法。在游戏规则之外没有更高的,隐藏的实在。数学教科书的结构就是这样的。一句话,数学是人类创造的游戏,是被发明出来的。
这就像国际象棋的规则只规定如何走子,却既不说明“帅”是“什么”,也不解释走子的“意义”。
现代数学只关心公理和逻辑法则,且遵守游戏规则。认为几乎能在物质上感知到这些东西。不管是在探索质数组无限性的证明还是在研究集合体系是否比实数体系范围更广,抑或是在确定五维空间中直线的特殊坐标时,现代数学家始终能感知到他们的研究对象或者干脆深信不疑。因为,在他们看来,摒除众多数学家的信念因素,柏拉图主义是站不住脚步的。数学家P。J戴维斯恰如其分地描述了这种情景:典型的数学家在工作日是柏拉图主义者,在休息日又是形式主义者。
数学是发现的还是发明的
1.数学规律是被发现的还是被发明的
这问题貌似哲理性。
地理学家发现未知地域,生物学家寻找新物种,化学家发现新化合物。数学家则是在几何图形和数字中发现新物体以及它们的特征。不过呢,数学上的物体有些特别:我们不能把它们送到博物馆或者动物园展览。它们其实是抽象的物体,是我们想象和思维的产物。有点像柏拉图式的观点。对于古典时代的哲学家柏拉图而言,数学极其重要。因为数学为他“所有可感知物背后都存在一个理想原型”这一观点提供了有力的支持。以下在数学上是不言而喻的:不管我们在沙地上,纸张上画圈圈还是在电脑屏幕前观察它,数学观点中关注的始终是哪个“理想”的圆,而不是沙地上的犁沟,纸张上的石墨或者屏幕上的像素点。不过呢,柏拉图信念的关键在于,理想物体是现实物体的最高阶段。在柏拉图看来,所有可感知的物体,也就是所有我们看到的,听到的,触及到的,闻到或是尝到的东西,都只不过是相应理想物体的单调影射而已。柏拉图主义者确信数学特征是被发现的,因为理想物体早已存在于柏拉图理想的天空中。
现代数学的观点与之恰好相反。以其形式的观点看来,数学只是游戏而已。这不代表允许做一切事或者什么都不重要。恰恰相反:游戏除了游戏规则之外就什么也没有了!玩家只能按游戏规则行事。数学中,公理就是游戏规则,阐述的是基本概念的使用方法。在游戏规则之外没有更高的,隐藏的实在。数学教科书的结构就是这样的。一句话,数学是人类创造的游戏,是被发明出来的。
这就像国际象棋的规则只规定如何走子,却既不说明“帅”是“什么”,也不解释走子的“意义”。
现代数学只关心公理和逻辑法则,且遵守游戏规则。认为几乎能在物质上感知到这些东西。不管是在探索质数组无限性的证明还是在研究集合体系是否比实数体系范围更广,抑或是在确定五维空间中直线的特殊坐标时,现代数学家始终能感知到他们的研究对象或者干脆深信不疑。因为,在他们看来,摒除众多数学家的信念因素,柏拉图主义是站不住脚步的。数学家P。J戴维斯恰如其分地描述了这种情景:典型的数学家在工作日是柏拉图主义者,在休息日又是形式主义者。
2.数学是谁发明的
数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”
自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。
从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。
"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。
与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。
对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。
这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”
而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。 事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。
显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。
在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。
由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”
他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通。
转载请注明出处发明科普网 » 数学是被发明的还是发现的